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Lagrangian Formulation of General Relativity
Volume Form

• Wlog and for 2×2 matrix Ω with components Ωi
j , we have

det(Ω) = Ω0
0Ω

1
1−Ω1

0Ω
0
1 = εabΩ

a
0Ω

b
1, where εab =

{ 0, a= b
+1, a= 0, b= 1
−1, a= 1, b= 0

.

• This implies εmndet(Ω) = εabΩ
a
mΩb

n .
• For normal coordinate basis {yα = V αt} and non-normal coordinate basis {xµ},

dyαdyβ →
(
∂yα

∂xµ
dxµ

)(
∂yβ

∂xν
dxν

)
=

∂yα

∂xµ
∂yβ

∂xν
dxµdxν .

• Thus εαβ
∂yα

∂xµ
∂yβ

∂xν
= εµνdet(Ω) ⇒ εαβdy

αdyβ = εµνdet(Ω)dx
µdxν

• Since Ω acts on gµν , and we can construct the metric from the
transformations as gµν =Ωα

µδαβ(Ω
β
ν )T , then

√
|det(g)|= det(Ω) .

• εαβdy
αdyβ ∼= |dyα×dyβ| in 4-dim Lorentzian manifold

==================⇒ dV ≡
√
−det(g)dx4 . 2/15



Lagrangian Formulation of General Relativity
Interlude: The REAL Covariant Formulation of Laws of Physics

• Since volume is everything in physics (technically speaking volume in physics is not empty, it
is THE stage for fields interactions that of real and virtual particles including the
gravitational effects), scaling volume by a factor

√
−g casts shadows on everything we

developed so far! It suggests introducing the concept of “tensor density of weight W” as:
Ta···

m··· = (
√
−g)WΩa

n · · ·fm
b · · ·T

n···
b··· .

• The net value of W depends on the number and the nature (covariant/contravariant) of the
tensor components that need to be rescaled, e.g., gab has W =−2 and gab has W =+2.

• Since dxµ has W =+1, then ∂µ has W =−1, i.e., ∂µ → 1√
−g

∂µ.

• Consequently, �= ∂µ∂
µ = ∂µ(g

µν∂ν)→
1√
−g

∂µ(
√
−ggµν∂ν) with W = 0.

• Thus the covariant derivative needs to be rescaled too s.t.
Tµ1···µr

ν1···νs;α = Tµ1···µr
ν1···νs,α+Γµ1

αβT
β···µr

ν1···νs
+ · · ·−Γβ

αν1
Tµ1···µr

β···νs
−·· ·−WΓβ

βαT
µ1···µr

ν1···νs

• Together with R being a scalar, luckily it has W = 0, which makes it a good candidate for
being a Lagrangian density of an action that can be extremized to get Einstein’s equations.
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Lagrangian Formulation of General Relativity
Variation with respect to the metric

• For a full covariant theory, promote the following:
{xα}→ {ea} , ηµν → gmn , ∂→∇ ,

√
−η→

√
−g .

• δ(g) =
∂(g)

∂gmn
δgmn =−ggmnδgmn or δ(g) = +ggmnδg

mn [see Week 5 p. 5.]

• Thus δ(
√
−g) = ∂(

√
−g)

∂(g)
δ(g) =−1

2

1√
−g

×−ggmnδgmn =
1

2

√
−ggmnδgmn.

• Also,
δ(δap)

δgmn
= 0 =

δ(gabgbp)

δgmn
= gab

δ(gbp)

δgmn
+gbp

δ(gab)

δgmn

Then, gbp
δ(gab)

δgmn
=−gab

δ(gbp)

δgmn
=−gab

δ(δmb δ
n
pgmn)

δgmn
=−δmb δ

n
pg

ab δ(gmn)

δgmn
=−gamδnp

∴ δgab =−gabδnpgbpδgmn =−gamgbnδgmn.

• Summary: δ(
√
−g) = 1

2

√
−ggabδgab and δgab =−gamgbnδgmn 4/15



Lagrangian Formulation of General Relativity
Einstein–Hilbert Action
• Define SEH =

1

16π

∫
dx4

√
−gR.

• δ(Γm
np) =

1

2
gmq [δ(gqn;p)+ δ(gqp;n)− δ(gnp;q)]+

((((((((((((((((
1

2
δgmq [(gqn;p)+(gqp;n)− (gnp;q)]

Notice that δΓ is a tensor quantity.
• δ(Riem) = δ(∇Γ−∇Γ)+������

δ(ΓΓ−ΓΓ) =∇(δΓ)−∇(δΓ).

• Since R= gabRab = gabδqpR
p
aqb, then δR= δ(gab)Rab+gabδqpδ(R

p
aqb) .

• δR=−gamgbnδgmnRab+gab∇p(δΓ
p
ab)−gab∇b(δΓ

p
ap)︸ ︷︷ ︸

p↔b

=−Rmnδgmn+∇p(g
abδΓp

ab)−∇p(g
apδΓb

ab)

∴ δR=−Rmnδgmn+∇p(V)p 5/15



Lagrangian Formulation of General Relativity
Einstein–Hilbert Action
• δSEH =

1

16π

∫
dx4

[
δ(
√
−g)R+

√
−gδ(R)

]
=

1

16π

∫
dx4

[
1

2

√
−ggmnδgmnR−

√
−gRmnδgmn+�������√

−g∇p(V)p
]

=
1

16π

∫
dx4

√
−g

[
1

2
gmnR−Rmn

]
δgmn

=
1

16π

∫
dx4

√
−g

[
−Gmn

G

]
δgmn ⇒ 1√

−g

δSEH

δgmn
=− Gmn

16πG

∣∣∣
vac.

= 0

• δSmatter = δ

∫
dx4

√
−g

[
1

2
gab∇aφ∇bφ+V (φ)

]
Noether
=====⇒ Tmn =

2√
−g

δSmatter

δgmn

• ∴
1√
−g

δ(SEH+Smatter)

δgmn
=− Gmn

16πG
+

Tmn

2
= 0⇒ Gab = 8πGTab .

• δ(dx4) is immanently considered in δ
√
−g, see passive/active transformations. 6/15



Lagrangian Formulation of General Relativity
Conservation of Energy-Momentum Tensor
• δgαβ = Lξgab = ξµgαβ,µ+ ξα,β + ξβ,α

covariantize
=======⇒ δgab =∇aξb+∇bξa

• δSmatter =

∫
dx4

[
δ(
√
−gL)

δgab
δgab+

δ(
√
−gL)
δφ

δφ

]
=

∫
dx4

[
1

2

√
−gT ab(∇aξb+∇bξa)+

√
−g

δL
δφ

Lξφ

]
=

∫
dx4

[
((((((((((((((((((
1

2

√
−g∇a(T

abξb)+
1

2

√
−g∇b(T

abξa)

−1

2

√
−g∇a(T

ab)ξb−
1

2

√
−g∇b(T

ab)ξa︸ ︷︷ ︸
a←→b

+
��������√
−g

δL
δφ

ξa∇aφ

]
=−

∫
dx4

√
−g

[
∇b(T

ab)

]
ξb = 0

∴ ∇b(T
ab) = 0 7/15



The Initial Value Problem
Normal Vectors Again!
• We have seen in wave equation treatment that Gab ∼Rab ∼ gcdgac,bd in Md=4

which is a 2nd order differential equation. Just like how we need x(t= 0) and
ẋ(t= 0) to solve ẍ(t), we also need gij and ∂tgij to solve Gab, where gij is the
“induced metric of hypersurface” Σd=3. We define N̂a as the normal to Σd=3.

• We define the signature of the normal N̂aN̂
a =±1 = s depending on whether

Σd=3 is timelike or spacelike respectively.
• Side note: if Σd=3 is lightlike, then N̂aN̂

a = 0, which means N̂ ∈ TpΣd=3 !!!!!
• Also, gijN̂ j = 0⇒ gij =Ωa

iΩ
b
jgab∓ N̂iN̂j

normal coordinate
===========⇒ gij = ηij ∓ N̂iN̂j

[This should remind you of the photon projection operator in QFT.]
• With the former information one can prove the following:

i. gikgkj = gij .
ii. ∀Xa ∈ TpM, we have Xa =Xa

|| +Xa
⊥ s.t. Xa

|| = gabX
b and Xa

⊥ =±N̂bX
bN̂a.

iii. ∀Xi, Y j ∈ TpΣ, we have gijXiY j = gabX
aY b.
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The Initial Value Problem
Spacetime Embedding & Foliation

• gµν =

[
gtt Ni

Ni gij

]
, and (gij)

−1 = gij for non-lightlike Σ, together with

Ni = gti = et⊗ei. Needless to say et is NOT necessarily timelike vector.

• Notice that if et ⊥ Σt, then Ni = 0 as
{
ei

}
⊂ TpΣt. This means from

perspective of an observer on TpΣt the “vector” Ni is defined in terms
of
{
ei

}
, and thus Ni ∈ Σt. Therefore, we can say that Ni measures how

et is “shifted” from being orthogonal to Σt.

• In the language of diffeomorphisms gij = ψ∗gµν for ψ :TpΣt→ TpM,
which is the “embedding function” that describes “manifold foliation”.

• Coordinatewise and for TpΣt basis
{
yi
}

, since et ≡ ∂t, then for TpM basis
{
xµ
}

we get fµ
i =∇eie

µ. But fµ
i is NOT a square matrix, WHY? (fµ

i)
−1 = Ωi

µ is ok!

• Decompose fµ
i into its i components like how Γµ

νρ is decomposed into µ components.

• fµ
i ≡ Eµ

i (or Ωi
µ ≡ Ei

µ) are called “Cartan tetrads” and work fine as vectors for TpΣt.
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The Initial Value Problem
Lapse & Shift functions

• Then, we define the normal to TpΣt as N̂µE
µ
i = 0. And if ∂t ⊥ TpΣt,

then N̂µ ≡ ∂t = (N̂0,0,0,0) as N̂µ ∈ TpM.

• Also for “normal”
{
yi
}

basis, eµ = Eµ
ie

i = δµie
i ⇒ gµν = δiµδ

j
νeiej .

This means that N̂µE
µ
i = N̂µδ

µ
i = 0 as µ 6= i in such coordinate system.

• We saw in TNB frame that N̂ = ∂T̂ /|∂T̂ |. To promote it in a Lorentian

manifold, then N̂µ =
∇µ(eαe

α)√
gµν∇µ(eαeα)∇ν(eαeα)

∣∣∣
α 6=i

⇒ N̂µN̂
µ = s .

As TpΣt is spacelike, then N̂µN̂
µ =−1. Usually for spherical diagonal metric eαeα = g00.

• As ∇t is not necessarily normal, then define N̂0 = n ⇒ N̂(et) = s/n =−1/n such that

g00 = etet = (−1)
N̂N̂

nn
= s(n)−2 ⇒ g00 =−n2

• Lapse n defines s
dτ

dt
while moving along N̂ from TpΣt to TpΣt+dt. 10/15



The Initial Value Problem
Contravariant Induced Metric & Drag Speed of Space
• gµν =

[
gtt Ni

Ni gij

]
=

[
sn2 Ni

Ni gij

]
.

• M =

[
A B

C D

]
⇒M−1 =

[
(A−BCD−1)−1 −(A−BCD−1)−1BD−1

−CD−1(A−BCD−1)−1 D−1+CD−1(A−BCD−1)−1BD−1

]

• gµν =

[
sn−2 −sn−2N i

−sn−2N i gij + sn−2N iN j

]
• As we see despite that gij = gij , gij 6= gij , i.e., The contravariant spatial components of the surface

metric are not the same as those of the bulk metric. But if gµν is diagonal N i=0
====⇒ gij = gij .

• This means N̂µ = gµνN̂ν = [gtt,gti]N̂0 = [sn−2,−sn−2N i] · sn = [n−1,−n−1N i] 6= 0

• Since N̂µ = N̂tet+ N̂ iei = n−1et−n−1N iei, then ∇t ≡ et = nN̂ +N iei

• To move along ∇t from TpΣt to TpΣt+dt we need to lapse along N̂ then shift along ei.
• gij = gij + sn−2N iN j reminds us of gij =Ωa

iΩ
b
jgab∓ N̂iN̂j . So, if we define V =

√
NiN i as the

“Drag Speed of Space”, then −(gtt)−1/2etN̂ = (1−V 2/n2)−1/2 := γV . [What does it mean if n < Ni?!]11/15



The Initial Value Problem
Extrinsic Curvature

• Let Y ∈ TpΣt and X ∈ TpM. If you parallel transport N̂ along X, i.e.,
Xa∇aN̂ = 0, then X(N̂bY

b) =�����
X(N̂b)Y

b+ N̂bX(Y b) = N̂bX
a∇a(Y

b) = 0.
So N̂ ⊥Xa∇a(Y ) or ∇X(Y ) ∈ TpΣt, i.e., only parallel components survive.

• Define K(X,Y ) =−N̂a(∇X||Y||)
a as the “Extrinsic Curvature”.

• From properties of X|| and Y||, and as Kab =Kba, then one can prove that

K =Xa
||Y

b
||∇aN̂b =Xa

||Y
b
|| g

c
agdb∇cN̂d ⇒ Kab = gca∇cN̂b .

• The last finding, together with the symmetric nature, helps defining

Kab =
1

2
LN̂gab .
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The Initial Value Problem
Tensors on Hypersurfaces & Constraints on Einstein’s Equations

• Using the diffeomorphism ψ : Σ→M, we can pull-back Γµ
νρ → γijk, where γijk is the

Christoffel symbol of Σ. And to avoid torsion, γiik = γikj .
• This means we can impose metricity on gij using the induced covariant derivative D s.t.

Dk(gij) = ∂kgij −γlkiglj −γ
l
jkgil = 0.

• D can be seen as the “projection” of ∇ on Σ, i.e., Di = gji∇j .

• With help of all these findings, one can prove that the induced Riemann tensor on Σ is

Ri
jkl = giagbjgckgdlR

a
bcd+ s(Ki

kKlj −Ki
lKkj) .

• After obtaining the induced Rij and R, one can prove that

GabN̂
aN̂b =RabN̂

aN̂b− 1

2
R=

1

2
(R−KabKab+K2) = 8πGTtt as energy constraint.

gkiG
ijN̂j =DiKki−DkK= 8πGgkiT

ijN̂j as momentum constraint. 13/15



Hamiltonian Formulation of General Relativity
The Problem of Time in ADM formalism of General Relativity

• Kij =− 1
2LN̂

gij indicates ∂tgij is important to consider in δSEH . So after applying the
induced derivatives and induced Christoffel symbols, one gets ġij =−2nKij +2D(iNj).

• The space component of SEH is defined SΣ =

∫
(R+KijKij −K2)n

√
gdx3

• Then, we can define a “conjugate momentum” as Πij =
∂SΣ
∂ġij

.

• Then, H=

∫
(Πij ġij −LΣ)dx

3

=16π

∫ (
ΠijΠij −

1

n−1
Π2
)

n
√

g
dx3−2

∫
Di

(
Πij

√
g

)
N i√gdx3− 1

16π

∫
Rn

√
gdx3

• We do not have terms like ṅ or Ṅ i, which means Πn =ΠN i = 0 is another constraint.

• Then for δH=

∫ (
∂H
∂n

δn+
∂H
∂N i

δN i
)
dx3

• Due to the constraints found before, it terns out that ∂H
∂n

=
∂H
∂N i

= 0, i.e., No Hamiltonian!14/15



Thank You!
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