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Week 7: Lagrangian & Hamiltonian Formulations of General Relativity

Hassan Alshal
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Outline

1. Lagrangian Formulation of General Relativity
2. The Initial Value Problem

3. Hamiltonian Formulation of General Relativity
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- Lagrangian Formulation of General Relativity
Volume Form
e Wlog and for 2 x 2 matrix © with components j» we have

0, a=b
det(Q) = 00,01, — Q1,00 = €,2%,Q0,, where g = { +ha=0,b=1.
—1, a = s =

e This implies | €,pdet(Q) = €,,Q% Q° |

e For normal coordinate basis {y* = v*t} and non-normal coordinate basis {z+},

oy“ oyP Ay Oy
a,y, B Yy n Y v\ __ Yy Yy m v
dy”dy ((%v“dx ) <8:Jc”dx ) ~ OxH Bazl’dx da”.

oy* OyP
e Thus eaﬁﬁﬁi” = e det(Q) = | eapdy®dy” = e, det(Q)dat dz”

e Since 2 acts on g,,,, and we can construct the metric from the
transformations as g, = Qo‘uéag(Qyﬁ)T, then | \/|det(g)| = det(Q2) |.
. eagdyo‘dyﬂ o |dya % dy5| in 4-dim Lorentzian manifold dV = —det(g)dx4 ‘ 2/15
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Lagrangian Formulation of General Relativity

Interlude: The REAL Covariant Formulation of Laws of Physics
e Since volume is everything in physics (technically speaking volume in physics is not empty, it
is THE stage for fields interactions that of real and virtual particles including the
gravitational effects), scaling volume by a factor \/—g casts shadows on everything we
developed so far! It suggests introducing the concept of “tensor density of weight W” as:

T e = (V=g) QYO T

e The net value of W depends on the number and the nature (covariant/contravariant) of the

tensor components that need to be rescaled, e.g., g, has W = —2 and gab has W =

1
e Since dz" has W = +1, then 9, has W = —1, i.e., 8, - —09,,.
" ) H \/jg "
——0u(v/—gg""8y) with W = 0.
\/—79 N( V)

e Thus the covariant derivative needs to be rescaled too s.t.

e Consequently, 0 =9,0" = 9,(¢""dv) —

P K vin = T B+ TSI sy o =T TR, = - WI M

Vs

e Together with R being a scalar, luckily it has W = 0, which makes it a good candidate for 3/15

being a Lagrangian density of an action that can be extremized to get Einstein’s equations.
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Lagrangian Formulation of General Relativity
Variation with respect to the metric

e For a full covariant theory, promote the following:

‘{xa}—%{ea} , ot — g™" , 0—V , M—)H‘
e i(g9)= 589(51 Sgmn =—g9""" 6gmn or 5(9) = +99mndg™" [see Week 5 p. 5.]
o Thus 5(v/=9) = 2N=05(9) = ~ = % ~0""Sgmn = 5370 S
o Also, i(gips —0= 6%;35” ) _ gab i;g:;’; )+ gup (;(jab)

09" = —g* 676" S gmn = —g"™ g"" Sgmn.

1
e Summary: |§(v/—g) = 5\/—ggab6gab and | 6g%° = —g*™¢""5gmn 4/15
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- Lagrangian Formulation of General Relativity

Einstein—Hilbert Action
e Define Sgg = —/deA\/_R

1 Lem
5(anp) = igmq [6(9qnip) +6(gapin) — 6 (gnpig)] + 559 ] : o) — (Gnpiq)]

Notice that 61" is a tensor quantity.

§(Riem) = 6(VIL = VI') + §(IL—=FT) =V V(4T).

Since R = g™ Ry, = g%, RP . then |§R = 5(9 )Y Rap + g?6° WO (RY ) |

agb’
o 0R=—g""g""§gynRap + gV, (6T7,) — gV (6T2,)
b
p

= —R"" 8 gmn + Vp(g**6T?,) — Vp(g™oTY)
0R = _Rmn(;gmn + Vp(V)p 5/15
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- Lagrangian Formulation of General Relativity

Einstein—Hilbert Action
o 355n = —— [ da® (v =g)R+v=gb(R)

].6“
1 mn mn
$4 [_,/_gg 5gmnR_1/_gR 5gmn_|_,/_ p:|

1
- 167
1
_/dlA /__g [_gmnR_Rmn] 5gmn

1 4 Gmn 1 5SEH Gmn
v 5 mn - — =
16 |: :| g - vV —9g 5gmn 167G Ivac. 0
® )Smatter = 5/d1'4\/ -9 [lgabVa¢vb¢+V(¢):| % T —= _2 0Smatter
2 V=g 5gmn

. 1 5(SEH+Smatter) o Gmn mn o —
=T e =gt 5 =0=|Gu=87GTu|

e §(dz*) is immanently considered in d,/—g, see passive/active transformations.
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Lagrangian Formulation of General Relativity
Conservation of Energy-Momentum Tensor

covariantize

® 590{5 - Eﬁgab - § gaﬂ n +§a B +§ﬁ, —_—— 59(11) - agb + bea
® 0Smatter = /d{IJ ( L) 6gab +—— ( E)

gab

54
— / da? %\/_—gTab( a§b+vb§a)+\/_ ££¢]
_ / N AT e TS

oL
VTG~ VI THT G+ e V0)
7 a+—b
- / dz'v/=g [vb@“b) &=0

|V (T™) =0 7/15
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- The Initial Value Problem

Normal Vectors Again!

We have seen in wave equation treatment that G, ~ Ry ~ g© gac ba i Mg—y
which is a 2nd order differential equation. Just like how we need z(t =0) and
&(t =0) to solve Z(t), we also need g;; and 0;9;; to solve Gy, where g;; is the
“induced metric of hypersurface” ¥;—3. We define N as the normal to $y4_s.
We define the signature of the normal N,Ne=+1=5s depending on whether
Ed 3 is timelike or spacelike respectively

normal coordinate

Also, gz’j =0=0;; =1 iQ jgab:FNiNj Qij = "Nij :FNiNj

[This should remind you of the photon projection operator in QFT.]
With the former information one can prove the following:

1 gkg]_gj

ii. VX% € T,M, we have X = X7+ X? st. X¢ =g% X® and X¢ = £N,X"N°.

iii. VX?, Y7 € T,%, we have gUX YT = g XYP.

8/15
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The Initial Value Problem
Spacetime Embedding & Foliation

gt | Ni
Ni | 9ij

N; = g1 = et ® €;. Needless to say e; is NOT necessarily timelike vector.

® guv = , and (gij)_l = g% for non-lightlike X, together with

e Notice that if e; L X, then A; =0 as {ei} C T,%4. This means from
perspective of an observer on szt the “vector” N; is defined in terms

of {ei}, and thus N € X¢. Therefore, we can say that A; measures how
e is “shifted” from being orthogonal to X¢.

e In the language of diffeomorphisms g;; = ¥ " guv for ¢ :szt% Tp./\/l,
which is the “embedding function” that describes “manifold foliation”.

e Coordinatewise and for szt basis {yl}, since e; = 9, then for Tp./\/l basis {x“}
we get U"z =V, el But U“Z is NOT a square matrix, WHY? (%)~1 =, is ok!

n

e Decompose U“Z into its ¢ components like how I"lfp is decomposed into p components.

9/15

o U =FE" (or Q') =E',) are called “Cartan tetrads” and work fine as vectors for T),%.
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The Initial Value Problem
Lapse & Shift functions

Then, we define the normal to T),3; as NME’; =0. And if 0y L Tp,

then NM =0 = (NO,O,O,O) as NH € Tp./\/l.

Also for “normal” {y’} basis, e = E”iei = 5”;61' =
This means that N,LE'“Z = Nﬂé”i =0 as u # ¢ in such coordinate system.

We saw in TNB frame that N = 7/|8T|. To promote it in a Lorentian

manifold, then

P—
Juv =19 Mdj,,eiej .

N, =

Viuleae®)

\/g;WV“(eaea)VV(eaea) 'a;ﬁz

= N,N* =5/

As szt is spacelike, then N#N # = —1. Usually for spherical diagonal metric eqe® = ggo.

As V; is not necessarily normal, then define Ng =n = N(e') =s/n = —1/n such that

NN _
g =t = (0 T =om =g = )

d
Lapse n defines s

dt

while moving along N from TpEt to Tp2t+dt- 10/15
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The Initial Value Problem

Contravariant Induced Metric & Drag Speed of Space

Gow = gtt‘/\/'i _ 5"12‘/\/'1‘
" N; ‘ 9ij N; ‘ 9ij
AlB | 1o (A—BCD-1)~1 \ —(A-BCD-1)~1BD"!
c| D | -¢D~YA-BCD 1)~ | D '4+CD1(A-BCD1)"1BD!

. sn=2 | —snT2N%
g"‘ = 57 — S i
—sn2N? ‘ g +sn 2NN

As we see despite that g;; = gij, , i.e., The contravariant spatial components of the surface

metric are not the same as those of the bulk metric. But if g,. is diagonal % g4 =g¥.

This means N# = gV N, = [¢*t, g*"]No = [sn=2, —sn—2N%].sn = [n=1, —n— 1A £ 0

Since N4 = Ntey + Nie; =n—le;, —n—1Ae;, then ‘ Vi=e: =nN+Nte;

M =

To move along V; from szt to szt—i-dt we need to lapse along N then shift along e;.
g = g% +sn"2N*N7J reminds us of g;; = Q“injgab qZNiNj. So, if we define V = v/ NV;N? as the

“Drag Speed of Space”, then —(gtt)_l/zetN =(1- V2/n2)_1/2 =y ‘ [What does it mean if n < N;?!] 11/15
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- The Initial Value Problem
Extrinsic Curvature

o Let Y €T,%; and X € T, M. If you parallel transport N along X, i.e.,
XoV,N =0, then X beb = XY+ Ny X (Y?) = N X0V, (Y?) = 0.
SoNL1X VoY) or Vx(Y) € T,%,, i.e., only parallel components survive.

e Define | K(X,Y) = —Z\Afa(VXHYH)a as the “Extrinsic Curvature”.

e From properties of X I and Y, and as Ky = Ky, then one can prove that

K = X{Y,'VaNy = XY96, 9% VeNg = | Kap = 95, VelVs |

e The last finding, together with the symmetric nature, helps defining

1
Kap = §£Ngab :
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The Initial Value Problem

Tensors on Hypersurfaces & Constraints on Einstein’s Equations

Using the diffeomorphism 1 : ¥ — M, we can pull back 1",,,) — fyjk, where 'y;-k is the
Christoffel symbol of 3. And to avoid torsion, v}, = ’Ykg

This means we can impose metricity on g;; using the induced covariant derivative D s.t.
I I
Dy(9ij) = OkYij — Vi 15 =719t = 0.

D can be seen as the “projection” of V on %, i.e., | D; = gjiVj

With help of all these findings, one can prove that the induced Riemann tensor on ¥ is

R'jpi = 9'00"9%9% R%ea +5(K 1K1y — K11 Kkj) |

After obtaining the induced R;; and R, one can prove that

GabNaNb = RabNaNb — %R = %(R - ICablCab + IC2) = 8w GTyt | as energy constraint.

13/15

gkiGij Nj = DiICki -DFK = 87rngl-Tij Nj as momentum constraint.
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Hamiltonian Formulation of General Relativity

The Problem of Time in ADM formalism of General Relativity

o Kij= _%L:Ngij indicates 0tg;; is important to consider in 6Sggr. So after applying the
induced derivatives and induced Christoffel symbols, one gets §;; = —2nK;; + 2D(i/\/}')~

e The space component of Sgy is defined Sy, = /(R —HCZ'jICij - IC2)n\/§dx3

S5
095

. ij
e Then, we can define a “conjugate momentum” as II" =

e Then, 7-[:/(Hijgij—L:E)dgs3

:167r/(n”nlj—n—n2> —2/1) <

e We do not have terms like 0 or A/ i, which means IIn = Il = 0 is another constraint.

e Then for éH = / (—&’H— ;;i 5Ni) da®

)J\/’Z\fd - Rn/gdz>

1o} 1o}
e Due to the constraints found before, it terns out that —H H

on AN

=0, i.e., No Hamiltonian!14/15
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Thant You
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