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Week 6: Curvature, Einstein’s field equations & gravitational approximations

Hassan Alshal
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1. Intrinsic Curvature
2. Einstein Field Equations

3. Weak Gravity Source
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Intrinsic Curvature
Parallel Transport

e Parallel transport of a vector Z along the curves means VxZ = Vy Z = 0. Componentwise
in {9y} basis this reads X" 2", + T4, 2° X" =0=| X" 2!, = -T',, 2’ X" |

° dis = X", AND % =Y"9,. Also, expand up to O(d3). 0 -
. zg:zg+d%zgds+m:zg_rgyzgxuds+... P
Z
d d P
 Zpgr =24 + 5 (24) dt = 2y =T, Zp XV ds + = (2 =T, Z0 XV ds) dt - X

=2l T, ZEX s+ (2o YT —Thy o YO ZEX" ds — T4, 2 ;Y7 X" ds) dt + ---
=2} Tl ZEX"ds —Th, ZBY dt — TV, , Y7 ZE X" dsdt + T, TR _Zp Y7 XY dsdt + - -

A—p

e The extra terms containing X" ;Y7 and Y"; X7 in Zhar and Zjs, cancel each other.

Z#

D = 2 TR, ZE XY ds — Thy ZBY T dt —Th,, Y7 ZE XY dsdt + T4 Th, Z0Y° X" dsdt

o |& Zlsr = 2l —Th, ZBYY dt — Ty ZEX ds —Thy, X7 ZEYVdtds + T Tpa ZEX YV dtds | 217
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Intrinsic Curvature
Riemann Curvature Tensor

o Zhoyr = 24 ~Thr#h XV ds ~ Ui gp¥"dt — T, V7 25 X dsdt + T 1), Z5Y 7 XV dsdt
Zor = 2~ Ul tp @t - Vs 2 Xds — Uy, o X7 Z0Y "V dtds + T4, T, 25 XY dtds
2 (o2 v

«—

li (Z,_L) li Z;)Lqr - Z;tl:sr
1m = lim —————
ds—0 dsdt ds—0 dsdt
dt—0 dt—0
A A
= (Thow = Tlhvo + T4, T T4, T, ) XY 25
2

e Last result defines the “Riemann Curvature Tensor” (Z“ ) = R" povX Yy z? |

i
dsSo dsdi
—

that is the “intrinsic curvature tensor” which measures the variation in vectors due to
parallel transport on surfaces defined by two geodesics VxZ =0 and Vy Z =0.

e In basis-independent system, | R(X,Y)Z := (VXVY —-VyVx— V[X’Y]) Z

d

e Or o (% (ws_lowt_lowsozpt (Z))) :=R(X,Y)Z | for ¢z, : ToeM — Ty, M. 3/17
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Intrinsic Curvature
Geodesic Deviation
e In the past definition of Riemann tensor, V(x y)Z
term disappears in {9, } basis as [0y,0v]Z = 0.

o }t = const

e Also, R(X,Y)Z=—-R(Y,X)Z, ie., | R" =0
p(ov)
e Additionally, one can prove that Riemann tensor is linear, i.e.,

‘R(fX,Y)Z: fR(X,Y)Z \ and \ R(X,Y)(fZ) = fR(X,Y)Z \

e Moreover, one can exploit the definition of Riemann tensor in terms of Christoffel symbols

=0|and |V _R"

to prove | R*

0 | which is the “Bianchi identity”.
[pov]

57 _
plov] = B plowir) =

[

Furthermore for Ry pov = gMAR)‘pU,,, we have | Rupor = Rovpp |and | R(p)00 =0

Since [X,Y] =0, then R(X,Y)X =VxVyX — Vy¥VxX = VxVxY. Therefore,
‘ R(X,Y)X =VxVxY | defines “geodesic deviations”. We use this result to prove cylinders,

in contrary with spheres, do NOT have intrinsic curvature despite having extrinsic one. 417

[For a torus, is R;‘kl = 0?7 NO! This is why topological features are essential in the definition of manifolds.]
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Intrinsic Curvature
Ricci Decomposition

Define Ric(Y,Z) =tr(X — R(X,Y)Z) = (R(eq,Y)Z, eq).

gaeg““RY g =0a"R% g = . with symmetric property  Rgp = Rpq-
. . A A

In coordinate basis Rpy =Ty, =Ty +T5 Ty — FK#FPV.

Define R = tr(tr(X — R(X,Y)Z)) = (R(ea,ep)ep; €a)-

R= gabRab .
In coordinate basis R = g”” (Fgu,y —Th, —I—Fiur,)}# - Fiuri)\u)-

Define the traceless Ricci tensor Z,, = Rgp — gRgab = gadEade, ie., 2% =0, s.t.

Wabed = Rabed — Sabed — Eabed
Wabea =0

R
Sabed = m (gadgbc - gacgbd) a
1 a
Eupea = d—2 (Zadgbc — Zyd9ac — LacGpd + Zbcgad) g

RabcdRade _ Sabcdsade + Eabchade + Wabchade
4 2
bed b
= abchVaC +d_2RabRa _(d—l)(d—2)
which is “Kretschmann scalar”.

2
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Einstein Field Equations
Einstein Tensor

e R by itself is not enough since gravity needs to be described by T,
o Ra—=-atfy as VaoRY® #£0 but VT =0.
° AISOM% it means Ry3o; = 0, which is generally incorrect, e.g., black holes.

1
e Define | Gop = Ryp — §Rgab = VoG =0 as one can prove Vo R = %VbR.

8rG
o |Guyp= %Tab which means:
c
‘Matter tells spacetime how to curve, and curved spacetime tells matter how to move.”
- J. A. Wheeler.
87TG 1 a ab
e Also, one can prove that Rqp = — | Tap — §Tgab , where T =T7 = g, T%.
c

e Lovelock theorem: Gup 4+ Agqp = %Tab, where A is “Einstein’s biggest blunder”, the

. 6/17
cosmological constant. /
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Weak Gravity Source
1st Order Approximation

From now on, we will indulge in a special system of units that set ¢ =1, which is tempting and dangerous sometimes!

® gab = Nab+ hap = gab = ﬁab — hot

1
Ty = 50" =0 (hovp+hopy = hupo) = | T, = 51" (howp+ hopy = hup.o)

A A
R,prcr = g,uTRTypo- = (77#7' + h’#T)(Fz;p,o - F;/-O',p + Fup 7)-\0 - Fua ;p)
=1ur(I)p s —1's,) as other terms contain higher orders.
1
1 Rm/pa = §nuTnT/\ M"i' h/\p,ua - hup,/\a _M_ h/\a,up + hVU,)xp)
= hyowp+ Puppo = hwoup — Pppvo

e After introducing h = h*), one can prove
N 1 1
Ry =0’ Ropgy = 070y, — 5O = 50u00h |
e And for | R=0""R,,, = 0°0°h,; —h|. /T
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. .Weak Gravity Source
Killing Vector & Gauge Condition

1
o G, =R, — 577’”'R =81GT )

Introduce hyy = hyy —nuwh , W =Rk —nph | h=h", = —h, s.t.

_ 1 - 1 _
G = 00y — 500y — 510,00 By = 87 G T,

o (V—t)sGuw = N + Py + LeNpn + -+ =Ny + Py +§up + o

o | hy — hiw = hyw +&uy + &, | the de Donder-Einstein-Lorenz-Weyl gauge.

It is similar to Lorenz gauge of EM A, — A, +6 , with condition A, , =0

Similarly, Ay, = 0 s.t. 1§, = 0 which is not a wave equation just like (16 = 0.

o |Ohy, = —167GT),

8/17
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Weak Gravity Source
Solutions in vacuum

Gravitational Modes

Amplitude~ 1072%m. You can stack 10° amplitudes within the radius of a proton! See
Felix Pirani’s “The Sticky Bead Argument” in Conference on the Role of Gravitation in
Physics at the University of North Carolina, Chapel Hill, 1957.

9/17
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~ Weak Gravity Source

z %& 770

C. W. Misner, K .S. Thorne, J. A. Wheeler, Gravitation, W. H. Freeman & Company, (1973), p. 1022

10/17
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. Weak Gravity Source
Birkhoff—Israel theorem

e In the framework of general relativity Birkhoff-Israel theorem states that

a spherically symmetric solution of G, = 0 < static and asymptotically flat.

e However, in the framework of Newtonian gravity, the shell theory states that
a static and asymptotically flat solution 2;'{ spherically symmetric of &, Why?

e It means the best choice for gop and g11 is to select exponential functions, say

G = =240 at? 4 2B dr2 112462 412 sin 0dg? |.

e One can use this metric to obtain I‘;}V components, and hence those of R, . e
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. Weak Gravity Source
Schwarzschild’s Solution

e Since R, =0 in vacuum, then for ' = % we have

Ry =A"+2(A)?-A(A+B)-2B.

Roo = —[A//+2(A/)2]e2(A_B) +A/62(A_B)(A/+B') _ %A'e2(A_B).

Ri1+ 62(B_A)R00 = —%(A/ + B,) = (0= A+ B = const.

Asymptotic flatness demands 4, B =% 0 s.t. G (r — 00) = Ny = .
Rog = —1+7(A'—Be 2B 4728 =0 = 1 =2rA'e?A 24 = (re?4).

t.
The solution of 1= (re?4) is re*4 —r = const. or |e?4 =1— cons
,
const. const. . 2GM
hoo = goo — 1o = —(1 — )— (1) = Weak

r r

2GM -1
® (G =— (1 — T) dt* + (1 — 2GTM> dr? 4-r2d6* 4 r? sin” 0d¢?

12/17
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. Weak Gravity Source
Energy Conditions from the Metric

Remember when we extremized [ds = [ dt,/g,, 2" to get the geodesics?

Extremize ds? to get dynamical conditions for objects moving along geodesics,

i.e., for ## = dz" /dr, apply variational approach on

L- (1-@)@)%1—2@”) (&) +72(2%)2 + r2sin 0(3%)?

r

- (12 e <1—2GTM) (1) +2(0)° + 1 sin? 0(6)2.

r

For for orbiting object with mass m = 1, Kepler laws remind us 6 = 7/2, i.e.,

13/17
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. Weak Gravity Source
Energy Conditions from the Metrlc

e o= (12 i (1-20) g

Variational ¢ reads 0 = ¢& — 4 (L) — %(27"2&) =|r2p=|Fxpl=1|J]|

do  dt\dg
. 2GM ..
e Variational ¢ reads 0 = %& — %(‘Zf) 24 (1 2EM )] = | (1 Cjﬂ t=FE|
® g, 22" = —1 for massive objects, i.e.,
2 ) 2 2 2
1= L _ r _J_:>7'12:(E2_1) 2G_M_J_+2GMJ
1-2GM/r 1-2GM/r 2 r r2 r3
72t 2\ 2 (E?2-1) , 2GM 3 9

Then, T = (7) =7 re+ 72 r° —r 4+ 2GMr.

H ; d¢ T IT;\ dr\? (E2—1)4 2GM 4 2

7“_2:¢ dr :> d_G/) = 72 rt 4+ 72 r°—r 4+ 2GMr .
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. Weak Gravity Source
Precession of Mercury’s Perihelion
(@) :

Y — | = .

dr \/(E;_l)r‘l + 235\47"3 —r24+2GMr

Ry dr

e |
R \/—( ¥el )r4+—2§¥r3—r2+2GMr

e The rest is math; after many steps one can solve the intergral as

1 ¢ 2GM
b= o= e <1+1R—)+O(R—>
1-— 2GM/R|| Il [l
 RyR_ and & — 2GM
Ry +R- -~ 1-2GM/R)’
o If we use actual values, we get ¢4 — ¢_ =43 more arcseconds per century

, where

R

than the 531 arcseconds per century predicted by Newtonian gravity! 1
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~ Weak Gravity Source
Precession of Mercury’s Perihelion

Rotation of plane containing a planet elliptical trajectory

(=)be(+) 10/17
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Thant You
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