

General Relativity Seminars

Week 5: Covariant derivative, curvature structure, and diffeomorphisms

Hassan Alshal

Outline

- 1. Covariant Derivatives
- 2. Levi-Civita Connection
- 3. Diffeomorphisms

Covariant Derivatives Tensor structure

- $\Gamma^{\mu}_{\alpha\beta} = \frac{1}{2}g^{\mu\nu}\left(g_{\nu\alpha,\beta} + g_{\nu\beta,\alpha} g_{\alpha\beta,\nu}\right)$
- $\nabla_{e_a}(e_b(s)) = e_{b,a}(s) \Gamma^c_{ab}e_c(s)$
- Define ∇ as a function that takes X, Y to ∇_XY with the following properties:
 i. ∇_{fX+gY}Z = f∇_XZ + g∇_YZ, for f, g smooth functions.
 ii. ∇_X(Y+Z) = ∇_XY + ∇_XZ.
 iii. ∇_X(fY) = f∇_XY + Y∇_X(f) = f∇_XY + YX(f) = f∇_XY + Ydf(X).
- Property iii. prevents defining ∇_X as a tensor since it is not linear. However, property i. allows us to define a (1,1) tensor as follows:
 I. ∇Y : T_pM → T_pM s.t. ∇Y : X → ∇_XY.
 II. ∇Y(ξ,X) : T^{*}_pM × T_pM → ℝ s.t. ∇Y(ξ,X) = ξ(∇_XY ∈ ℝ) for ξ ∈ T^{*}_pM.

Covariant Derivatives Connection components

- Define ∇_{ea}e_b = Γ^c_{ab}e_c, this is not the same as ∇_{ea}e_b(s).
 ∇_XY = ∇_{X^aea}(Y^be_b) = X^a∇_{ea}(Y^be_b) = X^ae_b∇_{ea}Y^b + X^aY^b∇_{ea}e_b = e_b∇_XY^b + X^aY^bΓ^c_{ab}e_c = e_c∇_XY^c + X^aY^bΓ^c_{ab}e_c = X^a(∂_{ea}Y^c + Y^bΓ^c_{ab})e_c
 Thus for {∂_µ}, we have ∇_XY^γ = X^α(∂_αY^γ + Y^βΓ^γ_{αβ})
- In comparison with $\nabla_{e_a}(e_b(s)) = e_{b,a}(s) \Gamma_{ab}^c e_c(s)$ there is a negative sign. This is because Y^{γ} is the component of a contravariant vector while $e_b(s)$ can be treated as the covariant component of a covariant vector.
- This motivates defining $\nabla_{e_a} f^b = -\Gamma^b_{ac} f^c$.
- Also, $\nabla_{\alpha}\xi_{\beta} = \partial_{\alpha}\xi_{\beta} \Gamma^{\gamma}_{\alpha\beta}\xi_{\gamma}$ for covariant component ξ_{β} of a covariant vector ξ .
- To save ink and paper, replace $\{\nabla_{\alpha}\} \to \{;\alpha\}$ same as replacing $\{\partial_{\alpha}\} \to \{,\alpha\}$. ^{3/10}

Covariant Derivatives Other properties

•
$$T^{\mu_1\cdots\mu_r}_{\nu_1\cdots\nu_s;\alpha} = T^{\mu_1\cdots\mu_r}_{\nu_1\cdots\nu_s,\alpha} + \Gamma^{\mu_1}_{\alpha\beta}T^{\beta\cdots\mu_r}_{\nu_1\cdots\nu_s} + \cdots - \Gamma^{\beta}_{\alpha\nu_1}T^{\mu_1\cdots\mu_r}_{\beta\cdots\nu_s} - \cdots$$

•
$$\nabla_Y \nabla_X(f) = \nabla_Y(X(f)) \xrightarrow{\text{coordinate basis}} f_{;\mu\nu} = (f_{,\mu})_{;\nu} = f_{,\mu\nu} - \Gamma^{\lambda}_{\mu\nu} f_{,\lambda}$$

- Since $f_{,[\mu\nu]} = 0$ set a condition s.t. $f_{;[\mu\nu]} = 0$ which is $\Gamma^{\alpha}_{[\mu\nu]} = 0$. [coordinate basis too] If not, then define $2\Gamma^{\alpha}_{[\mu\nu]} := T^{\alpha}_{\mu\nu}$ which is a <u>tensor</u> called "torsion"! In presence of torsion $\Gamma^{\mu}_{\alpha\beta} = \frac{1}{2}g^{\mu\nu}(g_{\nu\alpha,\beta} + g_{\nu\beta,\alpha} - g_{\alpha\beta,\nu} - T_{\nu\alpha\beta} - T_{\nu\beta\alpha} + T_{\alpha\beta\nu}).$
- All tensor treatments in this course assume torsion-free construction.
- Y(X(f)) is not a tensor since it is not linear. But one can prove that [X,Y](f) is indeed a tensor. [in any basis]
- $\nabla_X X = X^{\nu} (X^{\mu}_{,\nu} + \Gamma^{\mu}_{\nu\alpha} X^{\alpha}) e_{\mu} \xrightarrow{\text{coordinate basis}} \ddot{x}^{\mu} + \Gamma^{\mu}_{\nu\alpha} \dot{x}^{\alpha} \dot{x}^{\nu} = 0$

This is another definition of geodesic $\nabla_X X = 0$

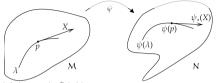
Levi-Civita Connection Metricity

• If $\nabla_{e_a} g_{ab} = 0$ then ∇ is called Levi-Civita connection. It means that the inner product defined by the metric is conserved even if the components are transferred along the curve that connection basis is tangent to, i.e., $\nabla_X g(X, X) = 0$. Componentwise and wlog this means that $g_{\alpha\beta;\mu} = g_{\alpha\beta,\mu} - \Gamma^{\nu}_{\mu\alpha}g_{\nu\beta} - \Gamma^{\nu}_{\mu\beta}g_{\alpha\nu} = 0 \xrightarrow{\text{LC}\nabla} g_{\alpha\beta,\mu} = \Gamma^{\nu}_{\mu\alpha}g_{\nu\beta} + \Gamma^{\nu}_{\mu\beta}g_{\alpha\nu}.$ • A determinant $g = \hat{g}^{\alpha\beta} \Delta_{\alpha\beta}, \ \Delta_{\alpha\beta} = g\hat{g}_{\alpha\beta}$ is the cofactor, defines $\frac{\partial g}{\partial \hat{c}^{\alpha\beta}} = \Delta_{\alpha\beta}$. Also, $\partial_{\mu}g = \frac{\partial g}{\partial \hat{a}^{\alpha\beta}} \partial_{\mu}\hat{g}^{\alpha\beta} = \Delta_{\alpha\beta}\partial_{\mu}\hat{g}^{\alpha\beta} = g\hat{g}_{\alpha\beta}\partial_{\mu}\hat{g}^{\alpha\beta} = g\hat{g}^{\alpha\beta}(\Gamma^{\nu}_{\mu\alpha}\hat{g}_{\nu\beta} + \Gamma^{\nu}_{\mu\beta}\hat{g}_{\alpha\nu}).$

Diffeomorphisms

Pull-back & Push-forward

• For *m*-dim \mathcal{M} and *n*-dim \mathcal{N} manifolds, a function $\psi: \mathcal{M} \to \mathcal{N}$ is smooth $\iff \phi_{\mathcal{N}} \circ \psi \circ \phi_{\mathcal{M}}^{-1}$ is smooth.



- For $f: \mathcal{N} \to \mathbb{R}$, a pull-back is $\psi^*(f): \mathcal{M} \to \mathbb{R}$ s.t. $\psi^*(f)(p) = f(\psi^*(p))$, for $p \in \mathcal{M}$.
- For $\lambda : \mathbb{R} \to \mathcal{M}$ a push-forward is $\psi_* : T_p \mathcal{M} \to T_{\psi(p)} \mathcal{N}$ s.t. $\psi_*(X) \in T_{\psi(p)} \mathcal{N}$ for $X \in T_p \mathcal{M}$.

•
$$(\psi_*X)f = \frac{d}{dt}(f \circ (\psi \circ \lambda(t))) = \frac{d}{dt}((f \circ \psi) \circ \lambda(t)) = X(\psi^*(f)) \Rightarrow \boxed{(\psi_*X)f = X(\psi^*(f))}.$$

- For $\xi \in T^*_{\psi(p)}\mathcal{N}$ we have $(\psi^*(\xi))(X) = \xi(\psi_*(X))$ where $X \in T_p\mathcal{M}$.
- If $\xi \equiv df$ then $(\psi^*(df))(\overline{X}) = df(\psi_*(\overline{X})) = (\psi_*(\overline{X}))(f) = X(\psi^*(f)) = d(\psi^*(f))(X)$, i.e., the operator d and the morphism ψ^* are commutative $[(\psi^*(df))(X) = d(\psi^*(f))(X)]$.
- For coordinate bases $\{x^{\alpha}\}$ of \mathcal{M} and $\{y^{\mu}\}$ of \mathcal{N} , the pull-back/push-forward is defined as $(\psi^{*}(f))(X)\Big|_{p} = X(\psi_{*}(f \circ \psi(\lambda)))\Big|_{p} = \frac{d(\psi_{*}f)}{dt} = \frac{\partial\psi_{*}f}{\partial\psi(\phi_{\mathcal{M}})} \frac{d\psi(\phi_{\mathcal{M}})}{dt} = \frac{\partial\psi_{*}f}{\partial y^{\mu}} \frac{dy^{\mu}}{dt} = \frac{\partial\psi_{*}f}{\partial y^{\mu}} \frac{\partial y^{\mu}}{\partial x^{\alpha}} \frac{dx^{\alpha}}{dt} \xrightarrow{\text{coordinate bases}} \left[\frac{\partial y^{\mu}}{\partial x^{\alpha}} X^{\alpha} \longleftrightarrow \frac{\partial x^{\alpha}}{\partial y^{\mu}} \psi_{*}(X^{\mu})\right] \text{ or } \left[\frac{\partial y^{\mu}}{\partial x^{\alpha}} \psi^{*}(\xi_{\mu}) \longleftrightarrow \frac{\partial x^{\alpha}}{\partial y^{\mu}} \xi_{\alpha}\right] \quad 6/10$

Diffeomorphisms Isometry

•
$$(\psi^*S)_{\alpha_1\cdots\alpha_s} = (\frac{\partial y^{\mu_1}}{\partial x^{\alpha_1}})\cdots(\frac{\partial y^{\mu_s}}{\partial x^{\alpha_s}})S_{\mu_1\cdots\mu_s}$$

 $(\psi_*S)^{\mu_1\cdots\mu_r} = (\frac{\partial y^{\mu_1}}{\partial x^{\alpha_1}})\cdots(\frac{\partial y^{\mu_r}}{\partial x^{\alpha_r}})S^{\alpha_1\cdots\alpha_r}$

- For $\psi : \mathcal{M} \to \mathcal{M}, \ \psi^* = (\psi_*)^{-1}$. If $\psi(T) = T$ for every $p \in \mathcal{M}$, then ψ is called "symmetry transformation of T". And if $T \equiv g(X, X)$, then ψ is "isometry".
- Best choice for ψ is that function which transfers $p \in \mathcal{M}$ to $\psi(p) \in \mathcal{M}$ along a curve $\lambda(t)$. Such morphism has $\psi_{t_1} \circ \psi_{t_2} \equiv \psi_{t_1+t_2}$. Also it means $\psi_{-t} \equiv (\psi_t)^{-1}$.
- This previous property satisfies the definition of "homomorphism". What about the "diffeo" part?

Diffeomorphisms

Lie derivatives

- For a manifold \mathcal{N} with $\tilde{\nabla}$ and another manifold \mathcal{M} with ∇ we define $\left[\tilde{\nabla}_X T := \psi_*\left(\nabla_{\psi^*(Y)}(\psi^*(T))\right)\right]$, where Y, T are in \mathcal{N} .
- This is not enough since we saw before that ∇_X is not linear. We need to develop another kind of derivatives that are linear when acting on vectors.

•
$$\mathcal{L}_X T := \lim_{t \to 0} \frac{((\psi_{-t})_* T) - T}{t} \Big|_p$$

•
$$\mathcal{L}_X(aS+bT) = a\mathcal{L}_X(S) + b\mathcal{L}_X(T)$$
. And $\mathcal{L}_X(S \otimes T) = \mathcal{L}_X(S) \otimes T + S \otimes \mathcal{L}_X(T)$.

•
$$\mathcal{L}_X f = X(f) = df(X).$$

•
$$\mathcal{L}_X Y = [X, Y] = (X^{\nu} Y^{\mu}_{,\nu} - Y^{\nu} X^{\mu}_{,\nu}) e_{\mu} \xrightarrow{\text{prove}} (\mathcal{L}_X \mathcal{L}_Y - \mathcal{L}_Y \mathcal{L}_X) T = \mathcal{L}_{[X,Y]} T.$$

•
$$(\mathcal{L}_{X}\xi)_{\mu}Y^{\mu} = \mathcal{L}_{X}(\xi_{\mu}Y^{\mu}) - \xi_{\mu}(\mathcal{L}_{X}Y)^{\mu} = \xi_{\mu}X^{\nu}Y^{\mu}_{,\nu} + Y^{\mu}X^{\nu}\xi_{\mu,\nu} - \xi_{\mu}X^{\nu}Y^{\mu}_{,\nu} + \xi_{\mu}Y^{\nu}X^{\mu}_{,\nu} \Rightarrow \underbrace{(\mathcal{L}_{X}\xi)_{\mu} = X^{\nu}\xi_{\mu,\nu} + \xi_{\nu}X^{\nu}_{,\mu}}_{\mu \leftrightarrow \nu}_{8/10}$$

Diffeomorphisms **Killing Vectors** • $\mathcal{L}_X g = \mathcal{L}_X (g_{\mu\nu} X^{\mu} X^{\nu}) = X^{\alpha} g_{\mu\nu,\alpha} X^{\mu} X^{\nu} + g_{\mu\nu} X^{\alpha} X^{\mu}_{,\alpha} X^{\nu} + g_{\mu\nu} X^{\alpha} X^{\nu}_{,\alpha} X^{\mu}$ $= X^{\alpha} g_{\mu\nu,\alpha} X^{\mu} X^{\nu} + X^{\alpha} X^{\mu}_{,\alpha} X_{\mu} + X^{\alpha} X^{\nu}_{,\alpha} X_{\nu}$ $= X^{\alpha} g_{\mu\nu,\alpha} X^{\mu} X^{\nu} + X^{\nu} X^{\mu}_{,\nu} X_{\mu} + X^{\mu} X^{\nu}_{,\mu} X_{\nu}$ $= X^{\alpha} g_{\mu\nu,\alpha} X^{\mu} X^{\nu} + X_{\mu,\nu} X^{\mu} X^{\nu} + X_{\nu,\mu} X^{\mu} X^{\nu}$ $\vdots (\mathcal{L}_X g)_{\mu\nu} = X^{\alpha} g_{\mu\nu,\alpha} + \xi_{\mu,\nu} + \xi_{\nu,\mu}$

• The basis-independent form of the last result is

$$(\mathcal{L}_X g)_{mn} = X^a g_{mn;a} + \xi_{m;n} + \xi_{n;m}$$

- The 1st term dies because of metricity. Therefore for an isometry $\mathcal{L}_x g = 0$, $\nabla_{(a}\xi_{b)} = 0$ where ξ_a is the Killing field.
- We can obtain same equation if we consider variation w.r.t $y^{\mu} = x^{\mu} + \varepsilon X^{\mu}$.
- Killing vectors help defining "conserved currents" $J^a = T^{ab}\xi_b$ as $\nabla_a J^a = 0$. ^{9/10}

