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Covariant Derivatives
Tensor structure

• Γµαβ =
1
2g
µν (gνα,β+gνβ,α−gαβ,ν)

• ∇ea(eb(s)) = eb,a(s)−Γcabec(s)

• Define ∇ as a function that takes X,Y to ∇XY with the following properties:
i. ∇fX+gY Z = f∇XZ+g∇Y Z, for f,g smooth functions.
ii. ∇X(Y +Z) =∇XY +∇XZ.
iii. ∇X(fY ) = f∇XY +Y∇X(f) = f∇XY +Y X(f) = f∇XY +Y df(X).

• Property iii. prevents defining ∇X as a tensor since it is not linear.
However, property i. allows us to define a (1,1) tensor as follows:
I. ∇Y : TpM→ TpM s.t. ∇Y :X →∇XY .
II. ∇Y (ξ,X) : T ∗pM×TpM→ R s.t. ∇Y (ξ,X) = ξ(∇XY ∈ R) for ξ ∈ T ∗pM.
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Covariant Derivatives
Connection components
• Define ∇eaeb = Γcabec, this is not the same as ∇eaeb(s).
• ∇XY =∇Xaea(Y

beb) =Xa∇ea(Y
beb) =Xaeb∇eaY

b+XaY b∇eaeb

= eb∇XY
b+XaY bΓcabec = ec∇XY

c+XaY bΓcabec

=Xa(∂eaY
c+Y bΓcab)ec

Thus for {∂µ}, we have ∇XY
γ =Xα(∂αY

γ+Y βΓγαβ)

• In comparison with ∇ea(eb(s)) = eb,a(s)−Γcabec(s) there is a negative sign.
This is because Y γ is the component of a contravariant vector while eb(s) can
be treated as the covariant component of a covariant vector.

• This motivates defining ∇eaf
b =−Γbacf

c.
• Also, ∇αξβ = ∂αξβ−Γγαβξγ for covariant component ξβ of a covariant vector ξ.
• To save ink and paper, replace {∇α}→ {;α} same as replacing {∂α}→ {,α}. 3/10



Covariant Derivatives
Other properties
• Tµ1···µrν1···νs;α = Tµ1···µrν1···νs,α+Γµ1αβT

β···µr
ν1···νs + · · ·−Γβαν1T

µ1···µr
β···νs −·· ·

• ∇Y∇X(f) =∇Y (X(f))
coordinate basis
==========⇒ f;µν = (f,µ);ν = f,µν−Γλµνf,λ

• Since f,[µν] = 0 set a condition s.t. f;[µν] = 0 which is Γα[µν] = 0. [coordinate basis too]

If not, then define 2Γα[µν] := Tαµν which is a tensor called “torsion”!

In presence of torsion Γµαβ =
1

2
gµν (gνα,β+gνβ,α−gαβ,ν−Tναβ−Tνβα+Tαβν).

• All tensor treatments in this course assume torsion-free construction.
• Y (X(f)) is not a tensor since it is not linear.

But one can prove that
[
X,Y

]
(f) is indeed a tensor. [in any basis]

• ∇XX =Xν(Xµ
,ν+ΓµναX

α)eµ
coordinate basis
==========⇒ ẍµ+Γµναẋ

αẋν = 0

This is another definition of geodesic ∇XX = 0 4/10



Levi-Civita Connection
Metricity

• If ∇ecgab = 0 then ∇ is called Levi-Civita connection.
It means that the inner product defined by the metric is conserved even if the
components are transferred along the curve that connection basis is tangent to,
i.e., ∇Xg(X,X) = 0. Componentwise and wlog this means that
gαβ;µ = gαβ,µ−Γνµαgνβ−Γνµβgαν = 0

LC∇
===⇒ gαβ,µ = Γνµαgνβ+Γνµβgαν .

• A determinant g = ĝαβ∆αβ, ∆αβ = gĝαβ is the cofactor, defines ∂g

∂ĝαβ
=∆αβ.

Also, ∂µg =
∂g

∂ĝαβ
∂µĝ

αβ =∆αβ∂µĝ
αβ = gĝαβ∂µĝ

αβ = gĝαβ(Γνµαĝνβ+Γνµβ ĝαν).

∴ ∂µg = 2gΓααµ
5/10



Diffeomorphisms
Pull-back & Push-forward
• For m-dim M and n-dim N manifolds, a function
ψ :M→N is smooth ⇐⇒ φN ◦ψ ◦φ−1

M is smooth.

• For f :N → R, a pull-back is ψ∗(f) :M→ R s.t. ψ∗(f)(p) = f(ψ∗(p)), for p ∈M.

• For λ : R→M a push-forward is ψ∗ : TpM→ Tψ(p)N s.t. ψ∗(X) ∈ Tψ(p)N for X ∈ TpM.

• (ψ∗X)f =
d

dt
(f ◦ (ψ ◦λ(t))) = d

dt
((f ◦ψ)◦λ(t)) =X(ψ∗(f))⇒ (ψ∗X)f =X(ψ∗(f)) .

• For ξ ∈ T ∗
ψ(p)N we have (ψ∗(ξ))(X) = ξ(ψ∗(X)) where X ∈ TpM.

• If ξ ≡ df then (ψ∗(df))(X) = df(ψ∗(X)) = (ψ∗(X))(f) =X(ψ∗(f)) = d(ψ∗(f))(X), i.e., the
operator d and the morphism ψ∗ are commutative (ψ∗(df))(X) = d(ψ∗(f))(X) .

• For coordinate bases {xα} of M and {yµ} of N , the pull-back/push-forward is defined as

(ψ∗(f))(X)
∣∣∣
p
=X(ψ∗(f ◦ψ(λ)))

∣∣∣
p
=
d(ψ∗f)
dt

=
∂ψ∗f

∂ψ(φM)

dψ(φM)

dt
=
∂ψ∗f
∂yµ

dyµ

dt
=

∂ψ∗f
∂yµ

∂yµ

∂xα
dxα

dt

coordinate bases
===========⇒ ∂yµ

∂xα
Xα←→ ∂xα

∂yµ
ψ∗(X

µ) or ∂yµ

∂xα
ψ∗(ξµ)←→

∂xα

∂yµ
ξα 6/10



Diffeomorphisms
Isometry

• (ψ∗S)α1···αs = (
∂yµ1

∂xα1
) · · ·(∂y

µs

∂xαs
)Sµ1···µs

(ψ∗S)
µ1···µr = (

∂yµ1

∂xα1
) · · ·(∂y

µr

∂xαr
)Sα1···αr

• For ψ :M→M, ψ∗ = (ψ∗)
−1. If ψ(T ) = T for every p ∈M, then ψ is called

“symmetry transformation of T”. And if T ≡ g(X,X), then ψ is “isometry”.
• Best choice for ψ is that function which transfers p ∈M to ψ(p) ∈M along a

curve λ(t). Such morphism has ψt1 ◦ψt2 ≡ ψt1+t2 . Also it means ψ−t ≡ (ψt)
−1.

• This previous property satisfies the definition of “homomorphism”. What
about the “diffeo” part?
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Diffeomorphisms
Lie derivatives
• For a manifold N with ∇̃ and another manifold M with ∇ we define

∇̃XT := ψ∗
(
∇ψ∗(Y )(ψ

∗(T ))
)

, where Y,T are in N .
• This is not enough since we saw before that ∇X is not linear. We need to

develop another kind of derivatives that are linear when acting on vectors.

• LXT := lim
t→0

((ψ−t)∗T )−T
t

∣∣∣∣
p

• LX(aS+ bT ) = aLX(S)+ bLX(T ). And LX(S⊗T ) = LX(S)⊗T +S⊗LX(T ).
• LXf =X(f) = df(X).
• LXY = [X,Y ] = (XνY µ

,ν −Y νXµ
,ν)eµ

prove
===⇒ (LXLY −LY LX)T = L[X,Y ]T .

• (LXξ)µY µ = LX(ξµY µ)− ξµ(LXY )µ =

ξµX
νY µ

,ν+Y µXνξµ,ν− ξµXνY µ
,ν+ ξµY

νXµ
,ν︸ ︷︷ ︸

µ←→ν

⇒ (LXξ)µ =Xνξµ,ν+ ξνX
ν
,µ

8/10



Diffeomorphisms
Killing Vectors
• LXg = LX(gµνXµXν) =Xαgµν,αX

µXν+gµνX
αXµ

,αXν+gµνX
αXν

,αX
µ

=Xαgµν,αX
µXν+XαXµ

,αXµ︸ ︷︷ ︸
α←→ν

+XαXν
,αXν︸ ︷︷ ︸

α←→µ
=Xαgµν,αX

µXν+XνXµ
,νXµ+X

µXν
,µXν

=Xαgµν,αX
µXν+Xµ,νX

µXν+Xν,µX
µXν

∴ (LXg)µν =Xαgµν,α+ ξµ,ν+ ξν,µ

• The basis-independent form of the last result is
(LXg)mn =Xagmn;a+ ξm;n+ ξn;m

• The 1st term dies because of metricity. Therefore for an isometry Lxg = 0,
∇(aξb) = 0 where ξa is the Killing field.

• We can obtain same equation if we consider variation w.r.t yµ = xµ+εXµ.
• Killing vectors help defining “conserved currents” Ja = T abξb as ∇aJ

a = 0 . 9/10



Thank You!
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