

General Relativity Seminars

Week 8: Black Holes & Wormholes

Hassan Alshal

Outline

- 1. Singularities in the Metric!
- 2. Event Horizon
- 3. Wormholes

Singularities in the Metric! Laplace-Michell "Dark Stars"

- $\frac{1}{2}ptv^2 = mgR = pt\frac{GM}{R}$. • If $v = c \Rightarrow R = \frac{2GM}{c^2}$, i.e., light cannot escape the star if its radius is less than $\frac{2GM}{c^2}$. Of course this analysis is incorrect (WHY?!) but the result miraculously matches with a "physical singularity" in Schwarzschild metric $ds^2 = -(1 - \frac{2GM/c^2}{r})dt^2 + \frac{1}{(1 - \frac{2GM/c^2}{r})}dr^2 + r^2d\theta^2 + r^2\sin\theta^2d\phi^2$.
- This corresponds to destroying the metric by setting $r = 2GM/c^2 \rightarrow g_{00} = 0$ and $g_{11} \rightarrow \infty$. Let's choose c = 1, then $R_s = 2GM$ is Schwarzschild radius.

Singularities in the Metric!

Interior Solution & Tolman–Oppenheimer–Volkoff Equation

- Previously we considered vacuum solution $T_{\mu\nu} = 0$ of Schwarzschild metric to obtain the mercury precession.
- Now we consider $T_{\mu\nu} = (\rho(r) + p(r)) V_{\mu}V_{\nu} + p(r)g_{\mu\nu}$, where ρ is mass density, p is the pressure, and $V_{\mu} = [V_0, \vec{0}]$ is the speed in rest frame.

• Since
$$V_{\mu}V^{\mu} = -1 = g^{\mu\nu}V_{\mu}V_{\nu}$$
, then $T_{\mu\nu} = \text{diag}(-g_{00}\rho, g_{11}p, g_{22}p, g_{33}p)$.
• Also, as $\rho \equiv \rho(r)$, then $1 - \frac{2GM}{r} \equiv 1 - \frac{2GM(r)}{r}$.
• Then $G_{\mu\nu} = 8\pi G T_{\mu\nu}$, where $G_{\mu\nu} = \text{diag}(G_{00}, G_{11}, G_{22}, G_{33})$.
• $G_{00} = 8\pi G T_{00} \rightarrow \frac{dM}{dr} = 4\pi r^2 \rho$. Knowing ρ gives solution for M .

$$G_{rr} = 8\pi G T_{rr} \xrightarrow{\nabla_r T^{rr} = 0} \left[\frac{dp}{dr} = -(\rho + p) \frac{GM + 4\pi G r^3 p}{r^2 - 2r GM} \right].$$
_{3/11}

Singularities in the Metric!

Buchdahl's theorem, Chandrasekhar limit, and TOV limit

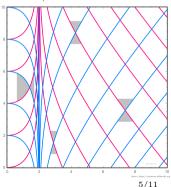
- If $\rho(r) = \begin{cases} \rho_0 &, r < R \\ 0 &, r > R \end{cases} \Rightarrow M(r) = \begin{cases} \frac{4}{3}\pi\rho_0 r^3 &, r < R \\ \frac{4}{3}\pi\rho_0 R^3 &, r > R \end{cases}$ • For r < R, $p(r) = -\rho_0 \frac{\sqrt{R^3 - 2GMr^2 - R\sqrt{R - 2GM}}}{\sqrt{R^3 - 2GMr^2 - 3R\sqrt{R - 2GM}}}$ [What is p(r), r > R?]
- As $\downarrow r, \uparrow p(r)$. Moreover, $p(r) \xrightarrow{M=4R/9G} \infty$. And if $M > \frac{4R}{9G}$, then the system is no longer time independent. The star collapses under gravity!
- Even if ρ is more complicated than ρ_0 , Buchdahl's theorem says $M_{\rm B} = \frac{4R}{9G}$ is the limit, for all different forms of $\rho(r)$, after which the star collapses.
- For the radius of Sun, $M_{\rm B} \sim 1.4 \times 10^{27} kg$. The Sun mass is $M_{\odot} \sim 2 \times 10^{30} kg!!!$
- We ignored non gravitational interactions. If considered, then $M > 1.4 M_{\odot}$ gives a dwarf star limit. And if $M \sim 3 - 4M_{\odot}$ a black hole is obtained!

Singularities in the Metric!

Coordinate Singularity vs. Physical Singularity

• At
$$r = 0$$
 and $r = 2GM$
 $ds^2 = -(1 - \frac{2GM/c^2}{r})dt^2 + \frac{1}{(1 - \frac{2GM/c^2}{r})}dr^2 + r^2d\theta^2 + r^2\sin\theta^2d\phi^2$
has singularities, i.e., $q_{\mu\nu}$ is degenerate.

- Physics comes from Riemann curvature. But it is NOT a coordinate invariant. Also, in vacuum, the Ricci scalar is zero. However Kretschmann scalar $R_{ijkl}R^{ijkl} = \frac{48G^2M^2}{r^2}$ which is a coordinate invariant (see Ricci decomposition).
- This tells us that r = 0 is the only problematic singularity as $R_{ijkl}R^{ijkl} \neq 0$ when r = 2GM.



Event Horizon Eddington–Finkelstein Coordinates • $r^* = r + 2GM \ln |r - 2GM| \Rightarrow dr^* = \left(1 - \frac{2GM}{r}\right)^{-1} dr$

 r^{*} → ∞ as r = 2GM, hence the name of tortoise coordinate after the famous Zeno of Elea's paradox.

• The ingoing
$$v = t + r^* \Rightarrow dt = dv - \left(1 - \frac{2GM}{r}\right)^{-1} dr$$
.

•
$$ds_{ingo.}^2 = -\left(1 - \frac{2GM}{r}\right)dv^2 + 2\,dv\,dr + r^2d\theta^2 + r^2\sin\theta^2d\phi^2$$

• The outgoing
$$u = t - r^* \Rightarrow dt = du + \left(1 - \frac{2GM}{r}\right)^{-1} dr$$

•
$$ds_{\text{outgo.}}^2 = -\left(1 - \frac{2GM}{r}\right)du^2 - 2\,du\,dr + r^2d\theta^2 + r^2\sin\theta^2d\phi^2$$

• If $t' = t \pm (r^* - r)$, then $ds^2 = -dt'^2 + dr^2 + r^2 d\theta^2 + r^2 \sin^2 \theta d\phi^2 + \frac{2GM}{r} (dt' \pm dr)^2 \xrightarrow{r \to \infty} ?$

Event Horizon

Eddington-Finkelstein Coordinates

• For lightcone, $ds_{\text{Schw.}}^2 = 0 \Rightarrow \frac{dr}{dt} = \pm \left(1 - \frac{2GM}{r}\right).$

At
$$r = 0$$
 we have $c = \frac{dr}{dt}\Big|_{\text{Hor.}} = 0!!!$

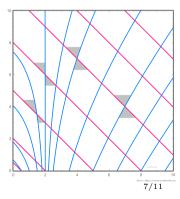
•
$$ds_{\rm EF}^2 = 0 \Rightarrow \begin{cases} dv = 0, v = \text{const.} \\ dr = 0, r = 2GM \\ \frac{dr}{dv} = \frac{1}{2}(1 - \frac{2GM}{r}) \end{cases}$$

- For v = const., it stays 45° .
- For r = 2GM, time t' freezes!

• For
$$\frac{dr}{dt} > 0$$
 has $\eta < 45^{\circ}$ when close to $r = 2GM$

• For
$$\frac{dr}{dt} = 0$$
 has $\eta = 0^{\circ}$ at $r = 2GM$.

• For
$$\frac{dr}{dt} < 0$$
 has $\eta < 0^{\circ}$ when $r < 2GM$.

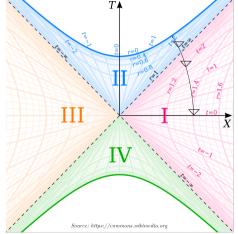


Event Horizon

Kruskal-Szekeres Coordinates • $T_I = \left(\frac{r}{2GM} - 1\right)^{1/2} e^{r/4GM} \sinh\left(\frac{t}{4GM}\right).$ $X_I = \left(\frac{r}{2CM} - 1\right)^{1/2} e^{r/4GM} \cosh\left(\frac{t}{4CM}\right).$ • $T^2 - X^2 = (1 - \frac{r}{2CM})e^{r/2GM}$. • $ds_{\text{KS}}^2 = \frac{32G^3M^3}{r}e^{-r/2GM}(-dT^2 + dX^2)$ $+r^2d\theta^2+r^2\sin\theta^2d\phi^2$ • $ds_{KS}^2 = 0 \Rightarrow dX/dT = c = 1$ always.

•
$$T_{II} = \left(1 - \frac{r}{2GM}\right)^{1/2} e^{r/4GM} \cosh\left(\frac{t}{4GM}\right).$$
$$X_{II} = \left(1 - \frac{r}{2GM}\right)^{1/2} e^{r/4GM} \sinh\left(\frac{t}{4GM}\right).$$
$$\bullet \tanh\left(\frac{t}{4GM}\right) = \begin{cases} T/X & \text{(in I and III)} \\ X/T & \text{(in II and IV)} \end{cases}.$$

Source: https://commons.wikimedia.org $T_{III} = -T_{II}$ and $X_{III} = -X_{II}$. $T_{IV} = -T_I$ and $X_{IV} = -X_I$. The spacetime is now "maximally extended".



8/11

Wormholes Einstein–Rosen Bridge

•
$$ds^2 = -(1 - \frac{2GM/c^2}{r})dt^2 + \frac{1}{(1 - \frac{2GM/c^2}{r})}dr^2 + r^2d\theta^2 + r^2\sin\theta^2d\phi^2.$$

• To resolve singularities of quantum particles, set $u^2 = r - 2M$.

•
$$ds_{\text{ER}}^2 = -\frac{u^2}{u^2 + 2M} dt^2 + 4(u^2 + 2M) du^2 + (u^2 + 2M)^2 (d\theta^2 + \sin^2\theta \, d\phi^2)$$

• This bridge is unstable and would collapse if it exists, proved by Robert W. Fuller and John A. Wheeler, (1962-10-15). "Causality and Multiply Connected Space-Time". Physical Review. 128 (2). American Physical Society (APS): 919–929.

Wormholes Ellis Wormhole

- $ds'^2 = -dt^2 + dr'^2 + (b^2 + r'^2)(d\theta'^2 + \sin^2\theta \, d\phi'^2).$
- To consider cylindrical symmetry, set dt = 0and $\theta' = \pi/2 \Rightarrow ds'^2 = dr'^2 + (r'^2 + b^2)d\phi^2$.

• Embed
$$ds'^2$$
 in $ds^2_{\text{cyl.}} = dz^2 + dr^2 + r^2 d\phi^2$

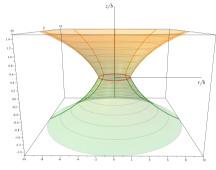
s.t.
$$ds_{\text{cyl.}}^2 = \left(\frac{\partial z}{\partial r'}\right)^2 dr'^2 + \left(\frac{\partial r}{\partial r'}\right)^2 dr'^2 + r^2 d\phi^2.$$

• By comparison between
$$ds'^2$$
 and $ds_{cyl.}^2$,
 $r^2 = r'^2 + b^2$ and $\partial r / \partial r' = r' / \sqrt{r'^2 + b^2}$.

• Cylindrical symmetry demands that $(\frac{\partial z}{\partial r'})^2 + (\frac{\partial r}{\partial r'})^2 = 1.$

Then
$$\left(\frac{\partial z}{\partial r'}\right)^2 + \left(\frac{r'}{\sqrt{r'^2 + b^2}}\right)^2 = 1 \Rightarrow z = b \sinh^{-1}\left(\frac{r'}{b}\right) = b \sinh^{-1}\left(\sqrt{\frac{r^2}{b^2} - 1}\right)$$
.

• Double check that $ds^2_{\rm cyl.} \rightarrow ds'^2 = dr'^2 + (r'^2 + b^2) d\phi^2$



10/11

