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Week 3: Manifolds & tensor structures
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Manifolds & Charts
Is that you again?!

A manifold is a topological space that looks (i.e. it is homeomorphic to) locally (i.e. in
a patch) like a piece of R?. d is the dimension of the manifold and the correspondence
between the patch and the piece of R™ can be used to label the points in the patch
by Cartesian R™ coordinates z*. In the overlap between different patches the different
coordinates are consistently related by a general coordinate transformation (GCT) 2/ #(z).
Only objects with good transformation properties under GCTs can be defined globally on
the manifold. These objects are tensors.

T. Ortin, Gravity and Strings, CUP, 2nd Ed. (2015), p. 3

Differential Geometry is not a geometric framework in the analytical sense. It is

about doing calculus on functions living on spaces rather than on R.
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~ Manifolds & Charts
What is a topological space?

e For a set X, we can define a “distance function”
d: X x X - RTJ{0}, d(zg,z;) = do. (X,d) is called metric set

e VIP: d(xg,x;) > 0 for xy # z; to avoid pseudometric spaces.
o A “ball” Bs(zg) = {z; € X|d(xg,x;) <}, i.e., § draws a boundary for x;.

e However, Bs has no boundary as d(xg,z;) < 0, i.e., By is “Open Set”.

e If there is a function f: (X,d) — (X’,d’), the ball structure guarantees
that f is continuous, i.e., By (f(z0)) = {f(x;) € X'|d'(f(x0), f(z;)) < '}
e For {O;|Bs C O;}, then |J Ojand () O; are open = O4(X) ={0;}.

arbitrary finite

e O4(X) becomes T if for O; € T, then @, X, J O;, ) O;€T.

arbitrary finite

(X,7T) is the so called the “topological space”. 3/17
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Manifolds & Charts
What is a manifold?

e A manifold M is a metric space endowed with a
topological structure, as described before s.t.
JOn = M, and a complete atlas.

e An atlas is {¢a|da : On = Uy, Uy, C R™}. This is
the correspondence between patches and pieces
of R™. To maintain smoothness, the overlap
between patches demands for O, NOg that

08(¢a") : ¢a(OaNOp) — ¢5(0aNOg).

e These ¢,’s are “charts” or “coordinate systems”!

e There are many ways to form {¢,}. The set
containing all those possible chart sets (J{¢q} is

4/17

the complete atlas.
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~Manifolds & Charts y
Charts & Smooth Fuctions

e After all, we can think of a chart as ¢ = (x1,2z2, -+ ,Zp).

e For S!, the usual chart ¢(#) := ¢(e?) = (cosf,sinf) cannot
cover S' as the point X has two values. Even if you make a
branch as in complex surfaces, ¢(0) = ¢(27).

e So, define ¢, : ST\{X} — [-1,1] x [-1,1]\{(1,0)}.
e Then, define ¢5: SN\{Y} — [-1,1] x [-1,1]\{(-1,0)}.
e 0,N0z=S"\{X,Y}, and O,UOz = 5!

= ¢p(¢a ") (01) = (cos (1 —),sin (61 — ), i.e., O =601 —7.
e A function f: M — R is smooth <= for any ¢, we have a
smooth F = f(¢') : U, — R. Such f is called “scalar field”.

SRR
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j Tangent & Cotangent Vectors
Charts & Smooth Fuctions

e A smooth curve in M is a smooth function A: I — M, and I C R.
e )\ is part of M, meanwhile f lives on M. Thus, we need to define f
according to A in order to do calculus on f.

d df dA
e So for a parameter ¢, we define $(f()\)) = d

d
e But —f is ambiguous as we do calculus in terms of parameters not
curves. Nevertheless, ¢(A) is indeed a smooth function and eventually

it gives (z1,x2, -+ ,2,) where x; can be treated as a parameter.
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Tangent & Cotangent Vectors
Contravariant Vectors

S f) =

This takes the form u(f) = u*é,(f)

d

()

u(f) | forms a “Tangent Space” T, M.

Linear independence: f(q) = f(p)+ (z* —a*)0, f

F@Hd(N)) = F(@™ 1) o (6(N))

< (s

o (6(N)) = B () % ()
= (u")ouf

=qM

Span condition is left for you to prove!

=

ou"
oxH

)o

, where (

«

W) is the general coordinate transformation.
x
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Tangent & Cotangent Vectors V=ae' =

Covariant Vectors o g
e How about df = 8f d e
A\
of dt
o df = o #d:v“— ,Lf dt— O futdt = ufu“ e 1
l/ ale

e Sodf(u”) = df(ﬁ) = [0pfu!]dx
e Just how u € T, M, we have the “Cotangent Space” Ty M := {df = (df), fry.
e One can prove | df (u) = u(f)

e and can also prove | dz"” <8H> = f”éu =df, (u“) =4,

8 14
e and finally prove |dz” = ( 6za>d1‘a 8/17
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Tensors

A Multilinear Map

r—tuple
T:T;/\/lx---xT;MprMx---prM — R | dim(T) =n""% [wny

s—tuple

This means given r covariant vectors {f#} and s contravariant vectors {é,},

then a T'(r,s) tensor mixes them to get a real number.

The tensor that sends a covariant vector to real numbers is a 7'(1,0) or the
contravariant tensor as V(f) € R. Componentwise T'(f*) = TH.

The tensor that sends a contravariant vector to real numbers is a 7°(0,1) or

the covariant tensor as df (V) € R. Componentwise T'(é,,) = T,.
T'(1,1) mixes both s.t. T: Ty M x T M — R. Componentwise T(f*,e,)=T".
V(f)=df(V)=T(df,V) but V € TpM and df € T; M. o7
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Tensors
Ordering & Abstract Index Notation

From now on, we drop the hat off the bases, assign X,Y, Z for contravariant vectors, and assign (,£,w for covariant vectors.

8 [0
° (;—#) is a special case of QO‘“. It is a basis dependent transformation when the basis {8a}.
z

e If action of a tensor or on a tensor is basis independent, replace greek indices with latin ones,
ie., (%) — 0%, and {8a} — {ea}.
r—tuple
e Whatis T:TyMx - x Ty MxTpMx - x TpM —R | dim(T) =n""*

s—tuple
r—tuple

—
compared to T": TypM x - x TpMx Ty M x -+ x Ty M — R, dim(T") =nt" 7
—_—

s—tuple 10/17
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Tensors

Ordering & Abstract Index Notation

e Both tensors are isomorphic! Both tensors share the same dimension.

e After all, tensors are made of covariant and contravariant vectors
T=[1 L en @ @e, @ M @0

e Linear properties of tensors guarantee that regardless of the vector type
we load rows, columns, or layers with, the action of the tensors on the [ °°’E;}S§Z§fﬁ%}$§i‘:j::@‘:;fif;?:m
covariant /contravariant vectors
T(él?"' 7£T‘aX17”' 7Xs) = T(galfalf" 7£arfaT7Xbleb17”' 7szebs)

gives same result.

e So all you need is consistency in loading information.

flihey’re the same piGtlige)

ai--ar - ai---ar -
e So A byby — Ablmbs . Basis independ.

e Thus the 4-potential contravariant vector A * = A,
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Tensors
Construction, Transformations & Contraction

o T=TM" L lm @ Qem, @fM®---® fr.

ni

e For A™i7r
higher (r+ p,s+ ¢)-ranked tensor as

(A®B)m1-~mTa1-~ap — A1y Ba1~~~a%1mbq .

ny--ngby---byg n1-Ng

n, and Bal'"a‘;lmb one can exploit both tensors to construct a
q

/I _—_Ssm
enfan

o e =Qea , =00 O (0 )T = () =

So, one can prove that ‘ (Q°,) 0" =06%
o For T =T(f™,el,) =T (U™ £, 00 ep) = Um0, T(f% ep) = O, T fwiog).

e If a covariant and a contravariant vectors share the same index inside a tensor,

[Remember the properties of mathematical groups].

they generically cancel each other, and the tensor rank becomes (r—1,s—1),

ie C Tmlzmr 7T/m1"‘mr—1
ey ny--teeng | Ny Ms—1 | 12/17
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Tensors
Symmetrization

The following are basis independent, covar./contrav. independent, and row/column/layer independent.

1
° Symmetric tensor Sab = Sba = S(ab) = §(Sab =+ Sba) , Same for contravariant.

e.g., the stress energy-momentum tensor 7}, = Ty, the metric tensor nuy = nyp.

1
° Antisymmetric tensor Aab = _Aba = A[ab] = i(sab - Sba) , Same for contravariant.

e.g., the EM field strength tensor Fj,, = —Fyy = 0uAv —Ov A,
1
o M((Z|Z]|b) = §(Maz]b + Mbija)» Same for contravariant, and mixed antisymmetric have —ve.
1
° M(abC)i = ?(Mabci + Meabi + Mpcai + Mpaci + Machi + Mcbai)

e M. [abc] — %(Mz abc_i_Mi cab +M1‘ bea Mi bac Mi ach Mi cba)

K]
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Metric Tensor

Definition & Properties

e Metric tensor is generically the covariant basis-independent bilinear map
9(0,2) : T,M x T, M — R that measures “distances” on the manifold 7, M
and “lengths” of contravariant vectors with the following properties:

L g(X,)Y)=9g(Y,X), VXY € T, M, i.e., it is symmetric: gop = Gpa-

2.9(X,Y)=0, VY e TyM <= X =0€ T, M, i.e., it is “non-degenerate”.
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Metric Tensor

Exchanging Covarients with Contravariants and vice versa

e For g = gupdz® @ dx® the basis {dz®} can be scaled to “orthonormal” basis
{€"} such that g, becomes just diagonal numbers. That does NOT mean the
manifold is now flat, it means we twist/deform the metric tensor (which is like
a ruler) such that it matches the curved lines we study.

° gRiemannian — Sigﬂ(—i—, +,-- ) 7 gpseudoRiemannian — Sign(—, — e, ) ,
ghorentzian — gjon(— 4 4+ 4+) | where sign is the “signature” of M.

e Define ¢* = ¢(0,2) : TyMXTEM =R, of course ggp = g,

o g(X%4q,ep) = X(eq,ep) = X%Gap = X}. Similarly X]g® = X"
But the above isomorphism demands X = X" =
g X=Xy |, | g% X, = X®|. Metric is unique in raising/lowering indices! wiog

e Non-degeneracy guarantees invertability. Therefore, one can prove

Gab 97 = 0,° and gab " = dim(M) |
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Curve Length

Different Types of Contravariant Vectors
e In a Lorentzian spacetime with sign(g) = (—,+,+,4),

ds® = —gopda® @ dz®
dzx® _ dxb
o ds=1\/—gupdat @ daeb = \/ dt2gabi ® dit
o (= /dt\/ —gabUan [How does it look in a comoving frame?]

e Because of the signature of g,;, we have different types of vectors
i. For g,,U%U" <0, the U? is a timelike vector.
ii. For go,UU® =0, the U is a lightlike vector.
iii. For g,,UU" > 0, the U® is a spacelike vector.

e For a timelike X #0, g(X,Y) =0=Y is a spacelike.
e For a lightlike X #0, ¢g(X,Y) =0=Y is a spacelike or lightlike.
e For a spacelike X #0, g(X,Y) =0=Y is a spacelike, lightlike, or timelike.

16/17
e Does that contradict with the non-degeneracy property of the metric? NO! WHY?
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Thant You
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