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Manifolds & Charts
Is that you again?!

T. Ortín, Gravity and Strings, CUP, 2nd Ed. (2015), p. 3

Differential Geometry is not a geometric framework in the analytical sense. It is
about doing calculus on functions living on spaces rather than on R.
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Manifolds & Charts
What is a topological space?

• For a set X, we can define a “distance function”
d :X×X → R+

⋃
{0}, d(x0,xi) = δ0. (X,d) is called metric set.

• VIP: d(x0,xi)> 0 for x0 6= xi to avoid pseudometric spaces.
• A “ball” Bδ(x0) = {xi ∈X|d(x0,xi)< δ}, i.e., δ draws a boundary for xi.
• However, Bδ has no boundary as d(x0,xi)� δ, i.e., Bd is “Open Set”.
• If there is a function f : (X,d)→ (X ′,d′), the ball structure guarantees

that f is continuous, i.e., Bδ′(f(x0)) = {f(xi) ∈X ′|d′(f(x0),f(xi))< δ′}.
• For {Oj |Bδ ⊂Oj}, then

⋃
arbitrary

Oj and
⋂

finite
Oj are open ⇒Od(X) = {Oj}.

• Od(X) becomes T if for Oj ∈ T , then ∅,X,
⋃

arbitrary
Oj ,

⋂
finite

Oj ∈ T .

• (X,T ) is the so called the “topological space”. 3/17



Manifolds & Charts
What is a manifold?

• A manifold M is a metric space endowed with a
topological structure, as described before s.t.⋃
Oα =M, and a complete atlas.

• An atlas is {φα|φα :Oα �� Uα, Uα ⊂ Rn}. This is
the correspondence between patches and pieces
of Rn. To maintain smoothness, the overlap
between patches demands for Oα∩Oβ that
φβ(φ

−1
α ) : φα(Oα∩Oβ)−→ φβ(Oα∩Oβ).

• These φα’s are “charts” or “coordinate systems”!
• There are many ways to form {φα}. The set

containing all those possible chart sets
⋃
{φα} is

the complete atlas.
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Manifolds & Charts
Charts & Smooth Fuctions
• After all, we can think of a chart as φ≡ (x1,x2, · · · ,xn).
• For S1, the usual chart φ(θ) := φ(eiθ) = (cosθ,sinθ) cannot

cover S1 as the point X has two values. Even if you make a
branch as in complex surfaces, φ(0) = φ(2π).

• So, define φα : S1\{X}→ [−1,1]× [−1,1]\{(1,0)}.
• Then, define φβ : S1\{Y }→ [−1,1]× [−1,1]\{(−1,0)}.
• Oα∩Oβ = S1\{X,Y }, and Oα∪Oβ = S1

⇒ φβ(φ
−1
α )(θ1) = (cos(θ1−π),sin(θ1−π)), i.e., θ2 = θ1−π.

• A function f :M→ R is smooth ⇐⇒ for any φα we have a
smooth F ≡ f(φ−1

α ) : Uα → R. Such f is called “scalar field”.
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Tangent & Cotangent Vectors
Charts & Smooth Fuctions
• A smooth curve in M is a smooth function λ : I →M, and I ⊂ R.
• λ is part of M, meanwhile f lives on M. Thus, we need to define f

according to λ in order to do calculus on f .

• So for a parameter t, we define d

dt
(f(λ)) =

df

dλ

dλ

dt
.

• But df

dλ
is ambiguous as we do calculus in terms of parameters not

curves. Nevertheless, φ(λ) is indeed a smooth function and eventually
it gives (x1,x2, · · · ,xn) where xi can be treated as a parameter.
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Tangent & Cotangent Vectors
Contravariant Vectors
• ∴ f(λ)≡ f(φ−1(φ(λ))) = f(φ−1)◦ (φ(λ))

d

dt

(
f(φ−1)◦ (φ(λ))

)
= ∂µF (xν)

d

dt

(
xµ(λ)

)
= (uµ)∂µf

• This takes the form u(f) = uµêµ(f)

• ∴
d

dt
(f(λ))≡ u(f) forms a “Tangent Space” TpM.

• Linear independence: f(q) = f(p)+(xµ−aµ)∂µf
∣∣∣
xµ=aµ

• Span condition is left for you to prove!

• ∂µ =
(∂xα
∂xµ

)
∂α , where

(∂xα
∂xµ

)
is the general coordinate transformation.
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Tangent & Cotangent Vectors
Covariant Vectors

• How about df =
∂f

∂xµ
dxµ?

• df =
∂f

∂xµ
dxµ = ∂µf

dxµ

dt
dt= ∂µfu

µdt= ∂µfu
µ dt

dxν
dxν

• So df(uν) = df(
dxν

dt
) = [∂µfu

µ]dxν

• Just how u ∈ TpM, we have the “Cotangent Space” T ∗
pM := {df = (df)ν f̂

ν}.

• One can prove df(u) = u(f)

• and can also prove dxν
(
∂µ

)
= f̂ν êµ ≡ dfν

(
uµ

)
= δνµ

• and finally prove dxν =
(∂xν
∂xα

)
dxα 8/17



Tensors
A Multilinear Map

• T :

r−tuple︷ ︸︸ ︷
T ∗
pM×·· ·×T ∗

pM×TpM×·· ·×TpM︸ ︷︷ ︸
s−tuple

−→ R , dim(T ) = nr+s [why?]

This means given r covariant vectors {f̂µ} and s contravariant vectors {êν},
then a T (r,s) tensor mixes them to get a real number.

• The tensor that sends a covariant vector to real numbers is a T (1,0) or the
contravariant tensor as V (f) ∈ R. Componentwise T (f̂µ) = Tµ.

• The tensor that sends a contravariant vector to real numbers is a T (0,1) or
the covariant tensor as df(V ) ∈ R. Componentwise T (êµ) = Tµ.

• T (1,1) mixes both s.t. T : T ∗
pM×TpM→ R. Componentwise T (f̂µ, êν) = Tµ

ν .
• V (f) = df(V ) = T (df,V ) but V ∈ TpM and df ∈ T ∗

pM. 9/17



Tensors
Ordering & Abstract Index Notation
From now on, we drop the hat off the bases, assign X,Y,Z for contravariant vectors, and assign ζ,ξ,ω for covariant vectors.

•
(
∂xα

∂xµ

)
is a special case of Ωα

µ. It is a basis dependent transformation when the basis
{
∂α

}
.

• If action of a tensor or on a tensor is basis independent, replace greek indices with latin ones,

i.e.,
(
∂xα

∂xµ

)
−→ Ωa

m and
{
∂α

}
−→

{
ea

}
.

• What is T :

r−tuple︷ ︸︸ ︷
T ∗
pM×·· ·×T ∗

pM×TpM×·· ·×TpM︸ ︷︷ ︸
s−tuple

−→ R , dim(T ) = nr+s

compared to T ′ : TpM×·· ·×TpM︸ ︷︷ ︸
s−tuple

×

r−tuple︷ ︸︸ ︷
T ∗
pM×·· ·×T ∗

pM−→ R , dim(T ′) = ns+r ?
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Tensors
Ordering & Abstract Index Notation

• Both tensors are isomorphic! Both tensors share the same dimension.

• After all, tensors are made of covariant and contravariant vectors
T ≡

[
Ta1···ar

b1···bs

]
ea1 ⊗·· ·⊗ ear ⊗fb1 ⊗·· ·⊗fbs

• Linear properties of tensors guarantee that regardless of the vector type
we load rows, columns, or layers with, the action of the tensors on the
covariant/contravariant vectors
T (ξ1, · · · , ξr,X1, · · · ,Xs) = T (ξa1f

a1 , · · · , ξarf
ar ,Xb1eb1 , · · · ,X

bsebs)

gives same result.

• So all you need is consistency in loading information.

• So Aa1···ar

b1···bs ≡A a1···ar

b1···bs . Basis independ.

• Thus the 4-potential contravariant vector A µ ≡Aµ.
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Tensors
Construction, Transformations & Contraction
• T ≡ Tm1···mr

n1···ns
em1 ⊗·· ·⊗ emr ⊗fn1 ⊗·· ·⊗fns .

• For Am1···mr
n1···ns

and B
a1···ap

b1···bq one can exploit both tensors to construct a
higher (r+p,s+ q)-ranked tensor as
(A⊗B)

m1···mra1···ap
n1···nsb1···bq =Am1···mr

n1···ns
B

a1···ap
b1···bq .

• e′m =Ωa
mea , f ′u = fm

af
a f ′me′n=δmn=======⇒ (Ωa

m)−1 ≡
(
Ω−1

)m
a
= fm

a.

So, one can prove that (Ωa
m)fm

b = δab [Remember the properties of mathematical groups].
• For Tm

n = T (f ′m,e′n) = T (fm
af

a,Ωb
neb) = fm

aΩ
b
nT (f

a,eb) = fm
aΩ

b
nT

a
b [wlog].

• If a covariant and a contravariant vectors share the same index inside a tensor,
they generically cancel each other, and the tensor rank becomes (r−1,s−1),

i.e., C
(
Tm1···i···mr

n1···i···ns

)
= T

′m1···mr−1
n1···ns−1 . 12/17



Tensors
Symmetrization
The following are basis independent, covar./contrav. independent, and row/column/layer independent.

• Symmetric tensor Sab = Sba ⇒ S(ab) =
1

2
(Sab+Sba) , Same for contravariant.

e.g., the stress energy-momentum tensor Tµν = Tνµ, the metric tensor ηµν = ηνµ.

• Antisymmetric tensor Aab =−Aba ⇒ A[ab] =
1

2
(Sab−Sba) , Same for contravariant.

e.g., the EM field strength tensor Fµν =−Fνµ = ∂µAν −∂νAµ.

• M(a|ij|b) =
1

2
(Maijb+Mbija), Same for contravariant, and mixed antisymmetric have –ve.

• M(abc)i =
1

3!
(Mabci+Mcabi+Mbcai+Mbaci+Macbi+Mcbai)

• M
[abc]

i =
1

3!
(M abc

i +M cab
i +M bca

i −M bac
i −M acb

i −M cba
i )
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Metric Tensor
Definition & Properties

• Metric tensor is generically the covariant basis-independent bilinear map
g(0,2) : TpM×TpM→ R that measures “distances” on the manifold TpM
and “lengths” of contravariant vectors with the following properties:

1. g(X,Y ) = g(Y,X), ∀X,Y ∈ TpM, i.e., it is symmetric: gab = gba.

2. g(X,Y ) = 0, ∀Y ∈ TpM⇐⇒X = 0 ∈ TpM, i.e., it is “non-degenerate”.
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Metric Tensor
Exchanging Covarients with Contravariants and vice versa
• For g = gabdx

a⊗dxb the basis {dxa} can be scaled to “orthonormal” basis
{em⊥} such that gab becomes just diagonal numbers. That does NOT mean the
manifold is now flat, it means we twist/deform the metric tensor (which is like
a ruler) such that it matches the curved lines we study.

• gRiemannian = sign(+,+, · · ·) , gpseudoRiemannian = sign(−,−, · · · ,+,+, · · ·) ,
gLorentzian = sign(−,+,+,+) , where sign is the “signature” of M.

• Define gab ≡ g(0,2) : T ∗
pM×T ∗

pM→ R , of course gab ∼= gab.
• g(Xaea,eb) =Xag(ea,eb) =Xagab =X ′

b. Similarly X ′
bg

ab =X ′′a.
But the above isomorphism demands Xa =X ′′a ⇒
gabX

a =Xb , gabXa =Xb . Metric is unique in raising/lowering indices! [wlog]

• Non-degeneracy guarantees invertability. Therefore, one can prove

gab g
bc = δ c

a and gab g
ba = dim(M) . 15/17



Curve Length
Different Types of Contravariant Vectors

• In a Lorentzian spacetime with sign(g) = (−,+,+,+),
ds2 ≡−gabdx

a⊗dxb

• ds=

√
−gabdxa⊗dxb =

√
−dt2gab

dxa

dt
⊗ dxb

dt

• `=

∫
dt

√
−gabUaUb [How does it look in a comoving frame?]

• Because of the signature of gab, we have different types of vectors
i. For gabU

aUb < 0, the Ua is a timelike vector.
ii. For gabU

aUb = 0, the Ua is a lightlike vector.
iii. For gabU

aUb > 0, the Ua is a spacelike vector.

• For a timelike X 6= 0, g(X,Y ) = 0⇒ Y is a spacelike.

• For a lightlike X 6= 0, g(X,Y ) = 0⇒ Y is a spacelike or lightlike.

• For a spacelike X 6= 0, g(X,Y ) = 0⇒ Y is a spacelike, lightlike, or timelike.

• Does that contradict with the non-degeneracy property of the metric? NO! WHY?
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Thank You!
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